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Abstract—In this study it is shown that the non-conservative stability problem of an end loaded
follower force. Beck's column, shares one frequency and an associated mode with a particular
conscrvative centripetally loaded column. This equivalence cnables one to carry out a serics of
experiments on the centripetaily loaded columns and then infer related results for Beck's column.
In this way the difficult task of experimentally producing a follower end force is avoided and the
experimental verification of Beck's column is accomplished indirectly.

L. INTRODUCTION

The stability problem of non-conscrvative structural systems is often encountered in engi-
neering practice, and in particular in acronautical engineering, This problem has received
considerable attention and good accounts of related analysis can be found in the literature,
sce, e.g. Bolotin (1961), Herrmann (1967) and Licpholz (1980). Structures subjected to
follower forces form a class of typical non-conscrvative systems. Beck (1952) studied a
cantilevercd column subjected to a tangential follower force at its free end, and developed
dynamic criteria for determining the critical load of the problem. This so-called Beck's
column, is often used as an example to illustrate the features of non-conservative systems
and newly proposed methods. There have not been satisfactory results in the literature for
the experimental verification of Beck's problem, since the tangential follower force cannot
be casily realized under common experimental conditions. Willems (1966) pointed out the
features of a centripetally loaded column which are shared with Beck's column and he
carried out the experiments on the former. The results he obtained are the static instability
of the centripetally loaded model and not the flutter instability of Beck’s column. This was
pointed out and correct relations between the two problems were described by Hung e al.
(1967).

In this paper, the relations of the centripetally loaded column with Beck’s column are
analysed in more detail, and it is shown that for a definite value of load, some centripetally
loaded columns can be found which are equivalent to Beck’s column with regard to one
frequency and the related model. That is, the frequencies and the related modes of Beck's
column can be found among a set of centripetally loaded columns. According to this
analysis, a simple experimental model simulating Beck’s column is established and sat-
isfactory results are obtained.

2. DYNAMICAL CHARACTERISTICS OF BECK'S COLUMN

Beck's column is a cantilevered elastic column subjected to a tangential follower force
at its free end. as shown in Fig. . The non-dimensional form of the boundary value problem
which describes the transverse motion of the column is
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Fig. 1. Beek's column,
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where 4 is the non-dimensional load, and Q° the non-dimensional frequency.
The general solution of eqn (1) is

y(&) = A cosh §,E+B sinh §,$+ C cos ;¢ + D sin 3¢ (6)

By =[Q +234)' 2 =421"2 By =[(QP+24%4) 2+ 221" (7)

Substituting eqn (6) into homogencous boundary conditions (2)-(5) gives the charac-
teristic equation of Beck's column

Ju(A. %) = 2Q*(1 +cosh f3, cos f2)+/iQ sinh f§, sin B,+ 4% = 0. (8)
The eigenfrequencics of the column with different values of load can be determined
from eqn (8). However, we are more concerned with the vibrating modes of Beck's column.
From eqns (2)-(4). we have the mode
V(&) = A[cosh f#,E— M sinh 3, —cos .+ N sin f£.8] C)]
where A is an undetermined coctlicient, and

M = (B cosh BB, + 3 cos B.)/(f7 sinh B, + B, sin ). N=MB/B.. (10)

Also, we have
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¥ (&)= A[B, sinh 8,5~ MB, cosh B &+ f.sin B+ NB, cos B.Z). (i
The actual motion of the column ts
Y. = () e (12)
It is noted that the ratio of ¥ (Z. ) over Y (. 1) is independent of time ¢, i.e.

Y  xd cosh B — M sinh §,&—cos f.{+ N sin 8.¢
Y'(E.0 ¥ B sinh B,5—MB, cosh 2+ B, sin .S+ NB, cos B.&

= R(S).
(13)
This indicates that at any time . during the motion, the tangential line of any point ¢
on the column always passes through a fixed point on the undeformed axis, the distance

from which to the point {is R(S). In particular, at the free end of the column, & = 1, we
have

yH(D) = R =+l (14)

Because y(E) is one of the vibrating modes of Beek's column and /7 is a constant, eqn
{14) shows that for any onc of the modes. the tangential follower force of Beck’s column
is equivalent to a centripetal foree acting on a cantilevered column, as shown in Fig. 2, the
line of action of which always passes through a fixed point on the undeformed axis and
along the tangential direction of the deformed axis at the free end. The variable r is the
distance from the fixed point to the free end.

3 CENTRIPETALLY LOADED COLUMN AND TS RELATION TO BECK'S COLUMN
In this section, we shall analyse a general centripetally loaded model. as shown in Fig.
3. The non-dimensional form of its dynamical equation and boundary conditions are
PO+HHTO - =0, 0<Eg
YOy =) =y"(l)y=0
Y+ AL () = y(D/(rih)]) = 0. (15)

Fig. 2. A vibrating mode of Beck's column.
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Fig. 3. A centripetally loaded model.

Using a similar procedure as in the preceding section, we obtain the characteristic
equation of this model as

Je(A Q3 r/ly = 27 + A7) (1 +cosh B, cos fi,)—i°—iQ sinh B, sin f8,

—-).(/if+]f§)<i;~sinh B, cos f§,— /}‘-‘cosh [, sin /i;)/(r//) =0 (16)
t 2

where #/{ is a variable parameter.

If the value of r// satisfies the condition in eqn (14), then eqn (16) degencrates into the
characteristic equation of Beck’s column given in eqn (8). That is, the centripetally louded
column is equivalent to Beck's column under the condition of eqn (14). However the
equivalence holds true with respect 1o a single frequency and the related mode.

With the centripetally loaded column, one may obtain any one of the frequencics and
the corresponding modes of Beek's column, from which the critical values may be deter-
mined. The key problem remains as to how to determine the appropriate values of r// under
which the two problems are equivalent. An iterative method for calculating the values of
r/l and thus the desired frequencies has been proposed (Xiang and Wang, 19884.b). The
convergence of the iteration is quite rapid.

Table | shows the characteristic values of the centripetally loaded column with different
values of rfl, in which the values underlined are completely the same as those of Beck’s
column.

Table 1. Characteristic values of a centripetally loaded column with different values of r/f

At
rt Qirt= 00 0.5 Lo 1.5 20
0.22964 498442 4,29651 3.87921 3.90281 4.24308
0.25968 4.98442 4.17695 3.56673 3.37517 3.58243
0.29767 498442 1.04402 321719 2,74990 2.78699
0.39356 4.98442 1.84944 271722 1.75463 1.54161
0.46652 4.98442 3.75969 2.50109 1.2731 0.99169
0.58816 0.12690 0.23516 0.34127 0.44149
0.64950 0.12690 0.20205 0.27195 0.29709

0.69308 0.12690 018174 0.22758 0.19084
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Table 2. Geometric size of specimens (mm)

No. { b h
I 29994 10.21 2.85
2 300.10 10.11 292
3 300.34 10.29 2.87

4. EXPERIMENTAL VERIFICATION

4.1. Experimental model

Since it is much easier to realize a centripetal load in experiments than a tangential
follower force, and the centripetally loaded column has relations with Beck's column, one
may obtain the experimental results for the frequencies of the latter by carrying out
experiments on the former, However, the critical load of Beck’s column cannot be obtained
directly through such experiments, because it is impossible for a centripetally loaded column
to lose stability by flutter.

In our experiments we measured a few frequencies of the centripetally loaded column
with appropriate values of the load P and the distance r//, which are the same as those
of Beck's column according to the analysis outlined earlier. Using the finite number of
experimental results obtained we employed a curve fitting procedure. From the fitted curve
the onset of loss of stability for Beck’s column can be estimated.

Suppose now that the characteristic equation of Beck's column takes the following
form:

J.G.Q% a) = 20, Q% ay +ay cosh a, iy cos asfiy)

+(ao ANa,Q) sinh (@ f8)) sin {(aof)+ad* =0 (17)

where 4, are some undetermined constants. It ts casy to see that when all of the values of ¢
are unity, eqn (17) will be the same as the exact characteristic egn (8).

Using the least squares curve-fitting method for the experimental data obtained, we
may determine the values for ¢,. Following this we may calculate the minimum value of
load through eqn (17) under which the first two frequencies are coincident, and this value
of load may be taken as the experimental critical load for Beck's column.

It should be pointed out that Willems (1966) carried out the experiments using similar
models. Since he was concerned with the critical load alone, and the two problems under
consideration have essentially different modes of instability, his assertion is not correct
{Huang et al., 1967).

4.2, Experiments and results

Three aluminum specimens were made which have the elastic modular £ = 6.98 x 10'°
N m 7 mass density p = 2.8 x 10" kg m ', and geometric size as shown in Table 2.

The centripetal toad was applied by means of thin steel wires passing through a fixed
point 0" at a distance r from the free end, which is determined from eqn (14). Figures 4 and
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Fig. 4. Test layout—vertical view,
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Fig. 5. Test layout—horizontal view.

S show the test layout. At each load application the column was given a slight vibration
and the resulting frequency was measured.

In order to keep the magnitude of the applied load constant during the vibration, the
steel wires were connected to some rubber bands. The bands were tensioned such that they
could be stretched with a very small increase in tension. Thus for all practical purposes the
load on the column can be considered to be constant.

For each of the three specimens, the frequencies measured under the loads, lower than
the critical value, arc shown in Table 3. The non-dimensional characteristic values were
then calculated and the fitting parameters g, in eqn (17) were determined using the least
squares curve-fitting method. These results are shown in Fig. 6.

Using the characteristic cquation, eqn (17), with parameters ¢, determined, the experi-
mental critical load for cach specimen was calculated. The non-dimensional values of these
loads were found to be 1.9154 for specimen number 1, 1.8854 for specimen number 2, and
1.8720 for specimen number 3. They represent. respectively, approximately 94, 93 and 92%
of the theoretical value, namely 2.0316.

Table 3. Experimental results: exg, theoretical s ey, experimental

First frequency (Hz) Second trequency (Hz)

P r r
No. (kg) (mm) e ) (mnt) ty Wy

0.0 25.55 2533 160.08 154.27

1.538 216.06 26.44 26.28 63.840 157.90 151.36

3077 214.16 27.39 27.14 65.000 155.66 149.10

6.153 210.0% 29.45 29.50 67.510 151.03 145.78

| 9.230 205.55 31.76 3180 70.310 [46.16 151.74
12.306 200.49 34.38 3430 73.460 140.98 137.02

15.383 194.81 37.39 37.42 77.070 135.42 133.89

18.459 188.32 4091 41.01 K1.270 129.37 129.70

21.536 180.76 45.14 86.310 122.63 12010

0.0 26.15 25.50 163.84 155.48

1.637 216.22 27.06 26.71 63.895 161.61 152.44

3273 214.33 28.03 28.25 65.055 159.32 150.97

6.546 210.24 30.14 29.82 67.565 154.58 146.64

2 9819 205.70 32.50 32.85 70.525 149.55 142.02
13.092 200.81 35.18 35.76 73.685 144.29 138.60

16.365 195.12 38.27 38.37 77.295 138.60 133.84

19.638 188.62 4{ K7 42.04 81.545 13244 129.22

22911 181.06 46.20 86.385 125.51 124.27

0.0 25.60 2519 160.78 153.91

1.579 216.34 26.56 25.66 63913 158.58 151.41

3.158 20444 27.51 2681 63.083 156.34 149.05

6.316 210.35 29.57 X992 67.593 151.69 145.17

3 9474 20381 31.89 30.97 70.393 146.79 141.23
12.632 200.75 3453 34.76 73.553 141.59 136.99

15.790 195.06 37.55 37.8% 77.163 136.01 133.15

18.947 188.56 41.09 41,42 81.373 12993 127.71

22,105 181.00 45.34 86.423 123.16 123.38
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Fig. 6. Theoretical. experimental and fitting results for Becks's column.

5. CONCLUDING REMARKS

By analysing the dynamic characteristics of Beck's column and a centripetally loaded
model. it has been shown that the two problems have equivalence with regard to any one
single frequency and the related mode. [t is possible to use this fact to obtain the frequencies
of Beek's column and its critical load.

According to this analysis, a simple experimental model simulating Beck’s column has
been established, and in effect a non-conservative problem hus been transformed into a
sct of conservative problems for experimental verification. Satisfactory results have been
obtiained and verified.
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